Vector Dark Matter Via Higgs Portal

In collaboration with: Paddy Fox and Tim M.P. Tait

arXiv:1509:XXXXX

Searching for MeV-Scale Gauge Bosons with IceCube

In collaboration with:

Dan Hooper

arXiv:1507.03015

Anthony DiFranzo UC Irvine/Fermilab

The Higgs Portal

- $H^{\dagger}H$ is a low dimension, SM singlet
- Relates DM to Weak scale, without requiring EW charges

$$H^{\dagger}H\Phi^{\dagger}\Phi$$

Scalar Portal:

Dim-4 Gauge invariant

$$H^\dagger H ar{\psi} \psi$$

Fermion Portal:

Dim-5

Gauge invariant

Vector DM Higgs Portal

$$\mathcal{L} \supset \lambda_{hVV} H^{\dagger} H V^{\mu} V_{\mu}$$

- dim-4, but not gauge invariant. Should be treated as an EFT.
- Observables have unphysical behavior

$$\sigma_{V-N}^{SI} = \frac{\lambda_{hVV}^2}{16\pi m_h^4} \frac{m_N^4 f_N^2}{(M_V + m_N)^2}$$

$$\Gamma_{h\to VV}^{\text{inv}} = \frac{\lambda_{hVV}^2 v^2 m_h^3 \beta_V}{256\pi M_V^4} \left(1 - 4 \frac{M_V^2}{m_h^2} + 12 \frac{M_V^4}{m_h^4} \right)$$

Djoudi et.al. [arXiv: 1112.3299]

Higgs width in direct detection plane

taking ATLAS 14TeV 300fb-1 90%CL sensitivity: BR(h->inv) < 0.19

ATLAS Collaboration [arXiv: 1402.3244]

See also:

CMS Collaboration [arXiv: 1404.1344]

UV-complete constructions

- 1) Charge Higgs under dark gauge group
- 2) Introduce new scalar which mixes with Higgs

$$D^{\mu}\Phi^{\dagger}D_{\mu}\Phi, H^{\dagger}H\Phi^{\dagger}\Phi \to \sin\theta \ hV^{\mu}V_{\mu}$$

hVV coupling related to V mass, giving expected behavior in observables

3) Radiatively generated

The Higgs Portal-Portal

$$D^{\mu}\Phi^{\dagger}D_{\mu}\Phi, H^{\dagger}H\Phi^{\dagger}\Phi \to \sin\theta \ hV^{\mu}V_{\mu}$$
$$+\cos\theta \ h_2V^{\mu}V_{\mu}$$

Baek et.al. [arxiv:1212.2131]

A Toy Model

$$\mathcal{L}_{loop} = -\frac{1}{4}AhV^{\mu\nu}V_{\mu\nu} - \frac{1}{2}BhV^{\mu}V_{\mu}$$

$$A, B \sim \frac{y_{\psi}}{m_{\psi}} \neq \frac{1}{v}$$

- Imagine integrating out a heavy fermion
- Similar to hGG/hFF, except:
 - Vector is massive, resulting in term 'B'
 - Yukawa not simply related to fermion mass

UV completion: Requirements

- 1) Anomaly free
- 2) Ensure stability of DM candidate (e.g. prevent kinetic mixing with SM gauge groups)
- 3) visible Higgs width is unaffected (e.g. gluons/photons)

UV Completion: Matter content

	(SU(2), U(1), U(1)')		(SU(2), U(1), U(1)')
$\psi_{1\alpha}$	(2, 1/2, Q)	ψ_{2lpha}	(2, 1/2, -Q)
$\chi_{1\alpha}$	(2, -1/2, -Q)	$\chi_{2\alpha}$	(2, -1/2, Q)
$n_{1\alpha}$	(1, 0, -Q)	$n_{2\alpha}$	(1, 0, Q)
Φ	(1, 0, NQ)		

$$-\mathcal{L}_{int} = m(\epsilon^{ab}\psi_{1a}\chi_{1b} + \epsilon^{ab}\psi_{2a}\chi_{2b}) + m_n n_1 n_2 + y_{\psi}(\epsilon^{ab}\psi_{1a}H_b n_1 + \epsilon^{ab}\psi_{2a}H_b n_2) + y_{\chi}(\chi_1 H^* n_1 + \chi_2 H^* n_2) + h.c.$$

- 1) Anomalies are canceled within these pairs
- 2) U(1)' charge conjugation symmetry protects kinetic mixing
- 3) Higgs doesn't interact with new charged fermions

Matter after EWSB

$$-\mathcal{L}_{int} = m(\epsilon^{ab}\psi_{1a}\chi_{1b} + \epsilon^{ab}\psi_{2a}\chi_{2b}) + m_n n_1 n_2 + y_{\psi}(\epsilon^{ab}\psi_{1a}H_b n_1 + \epsilon^{ab}\psi_{2a}H_b n_2) + y_{\chi}(\chi_1 H^* n_1 + \chi_2 H^* n_2) + h.c.$$

Gives rise to 3 Neutral and 2 Charged Dirac Fermions:

$$-\mathcal{L}_m = NM_nN' + EM_eE' + h.c.$$

$$N = \begin{bmatrix} \psi_{1n} \\ \chi_{2n} \\ n_2 \end{bmatrix}, \ N' = \begin{bmatrix} \psi_{2n} \\ \chi_{1n} \\ n_1 \end{bmatrix}, \ E = \begin{bmatrix} \psi_{1e} \\ \chi_{2e} \end{bmatrix}, \ E' = \begin{bmatrix} \chi_{1e} \\ \psi_{2e} \end{bmatrix}$$

$$M_{n} = \begin{bmatrix} 0 & -m & -y_{\psi}v/\sqrt{2} \\ -m & 0 & y_{\chi}v/\sqrt{2} \\ -y_{\psi}v/\sqrt{2} & y_{\chi}v/\sqrt{2} & m_{n} \end{bmatrix}, M_{e} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}$$

UV Completion: Purpose of Scalar

	(SU(2), U(1), U(1)')		(SU(2), U(1), U(1)')
$\psi_{1\alpha}$	(2, 1/2, Q)	$\psi_{2\alpha}$	(2, 1/2, -Q)
$\chi_{1\alpha}$	(2, -1/2, -Q)	$\chi_{2\alpha}$	(2, -1/2, Q)
$n_{1\alpha}$	(1, 0, -Q)	$n_{2\alpha}$	(1, 0, Q)
Φ	(1, 0, NQ)		

- Solely to break U(1)'
- But could also:
 - Cause new fermions to mix with SM leptons (N=±1)
 - Contribute to mixing between new fermions (N=±2)
 - Mix with Higgs $\lambda H^\dagger H \Phi^\dagger \Phi$

Observables from Toy Model

$$\Gamma(h \to VV) = \frac{\sqrt{1 - 4m_V^2/m_h^2}}{64\pi m_h} \left[|A|^2 m_h^4 \left(1 - 4\frac{m_V^2}{m_h^2} + 6\frac{m_V^4}{m_h^4} \right) + 3(A^*B + AB^*) m_h^2 \left(1 - 2\frac{m_V^2}{m_h^2} \right) + \frac{1}{2} |B|^2 \frac{m_h^4}{m_V^4} \left(1 - 4\frac{m_V^2}{m_h^2} + 12\frac{m_V^4}{m_h^4} \right) \right]$$
 for small m_V, $|B| \sim m_V^2$

$$\sigma(VN \to VN) = \frac{1}{4\pi m_h^4} \left(\frac{f_n}{v}\right)^2 \left(\frac{m_N^2}{m_N + m_V}\right)^2 |B - Am_V^2|^2$$
for $m_V \to 0$: $|B| \to 0$, $|A| \to \text{constant}$

Two wrongs DO make a right

(taking ATLAS 14TeV 300fb-1 90%CL sensitivity: BR(h->inv) < 0.19) ATLAS Collaboration arXiv:1402.3244

-Invisible Higgs width: VBF Higgs (CMS Collaboration [arXiv:1404.1344]) including off-shell Higgs contributions (Endo et.al. [arXiv:1407.6882]) -Direct Detection: LUX Collaboration [arXiv:1310.8214]

Necessity for Full Matter Content

- If the two heavier states are not much heavier than the first
- Description of all box diagrams, which allow other annihilation channels for large DM mass as well as photon lines
- Higgs couplings aren't diagonal, so Direct Detection and Collider constraints may be further suppressed

Loops in Full Theory

Triangle:

- Only diagonal Higgs couplings contribute
- Only neutral fermions
- Easily done by hand

Boxes:

- Also: WW,ZZ,yy,hZ,yZ
- All fermions contribute
- Use software for evaluation

Implementing Loops in Relic Abundance

- No numerical packages do this for non-SUSY models
- Developed code to integrate two packages:
 - MicrOmegas: tree level Relic Abundance calculator
 - Feynarts/FormCalc: Loop level matrix element tool
- Looking to generalize and automate this implementation

Preliminary Sample Point

$$m = 300 \text{ GeV}, \ m_n = 800 \text{ GeV}, \ y_{\psi} = 0, \ y_{\chi} = 2.0$$

$$(M_{N1} = 943 \text{ GeV}, M_{N2} = 214 \text{ GeV}, M_{N3} = 357 \text{ GeV})$$

And now for something completely different.....

Searching for MeV-Scale Gauge Bosons with IceCube

arXiv:1507.03015

In collaboration with:

Dan Hooper

UHE neutrinos at IceCube

IceCube Collaboration arxiv:1405.5303

- 37 events with energies ranging from 30 to 2000 TeV
- Possibly due to extragalactic sources
- Try to capitalize on these high energy neutrinos rather than understand their source

Case Study: $(g-2)_{\mu}$

- Δa_{μ} : 3.6 σ deviation between measurement and SM prediction PDG Phys.Rev. D86, 010001 (2012)
- Possible solution: U(1)_{μ-τ}

 M_{z'}~1-100 MeV still allowed by trident experiments

Altmannshofer et.al. arXiv:1406.2332

Scattering with Cosmic Neutrinos

Technical Details

$$-(1+z)\frac{H(z)}{c}\frac{d\widetilde{n}_{i}}{dz} = \underline{J_{i}(E_{0},z)} - \underline{\widetilde{n}_{i}}\sum_{j}\langle n_{\nu j}(z) \sigma_{ij}(E_{0},z)\rangle$$
$$+P_{i}\int_{E_{0}}^{\infty} dE'\sum_{j,k}\widetilde{n}_{k}\left\langle n_{\nu j}(z) \frac{d\sigma_{kj}}{dE_{0}}(E',z)\right\rangle$$

Source Term: source distribution and redshift evolution

Scattering term: modeled as absorption

Regeneration term: from scattering products

Thermal distribution of CNB is taken into account

Assuming the source has a constant comoving density Inverted Hierarchy, with maximal neutrino mass sum

Various Source Terms

- Relatively insensitive to source distribution:
 - Neutrinos produced at lower redshift contribute most to total measured flux
 - Structures formed at high redshift tend to be washed out by neutrinos regenerated at lower redshifts

Summary & Conclusions

- Vector DM Higgs portal
 - Should be treated as EFT
 - Viable UV completions can be constructed for the Vector portal
 - Relic abundance is difficult to get with the vector portal. Though including mixing and loop level processes can help.
- MeV Gauge Bosons at IceCube
 - While not overly sensitive to the exact source evolution, we need:
 - a better understanding of the CNB
 - more precise measurements of neutrino properties
 - a better understanding of the UHE sources
 - More IceCube data!

Thanks! Questions?